Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 644708, 2021.
Article in English | MEDLINE | ID: mdl-34721309

ABSTRACT

In this study, the diversity of bphA genes was assessed in a 13C-enriched metagenome upon stable isotope probing (SIP) of microbial populations in legacy PCB-contaminated soil with 13C-biphenyl (BP). In total, 13 bphA sequence variants (SVs) were identified in the final amplicon dataset. Of these, one SV comprised 59% of all sequences, and when it was translated into a protein sequence, it exhibited 87, 77.4, and 76.7% identity to its homologs from Pseudomonas furukawaii KF707, Cupriavidus sp. WS, and Pseudomonas alcaliphila B-367, respectively. This same BphA sequence also contained unusual amino acid residues, Alanine, Valine, and Serine in region III, which had been reported to be crucial for the substrate specificity of the corresponding biphenyl dioxygenase (BPDO), and was accordingly designated BphA_AVS. The DNA locus of 18 kbp containing the BphA_AVS-coding sequence retrieved from the metagenome was comprised of 16 ORFs and was most likely borne by Paraburkholderia sp. The BPDO corresponding to bphAE_AVS was cloned and heterologously expressed in E. coli, and its substrate specificity toward PCBs and a spectrum of flavonoids was assessed. Although depleting a rather narrow spectrum of PCB congeners, the efficient transformation of flavone and flavanone was demonstrated through dihydroxylation of the B-ring of the molecules. The homology-based functional assignment of the putative proteins encoded by the rest of ORFs in the AVS region suggests their potential involvement in the transformation of aromatic compounds, such as flavonoids. In conclusion, this study contributes to the body of information on the involvement of soil-borne BPDOs in the metabolism of flavonoid compounds, and our paper provides a more advanced context for understanding the interactions between plants, microbes and anthropogenic compounds in the soil.

2.
Front Microbiol ; 12: 657311, 2021.
Article in English | MEDLINE | ID: mdl-33995321

ABSTRACT

The involvement of bacterial aromatic ring-hydroxylating dioxygenases (ARHDs) in the degradation of aromatic pollutants, such as polychlorinated biphenyls (PCBs), has been well studied. However, there is considerable speculation as to the origin of this ability. One hypothesis is centered on a connection between the ability to degrade aromatic pollutants and the necessity of soil bacteria to cope with and/or utilize secondary plant metabolites (SPMs). To investigate this connection, we researched the involvement of biphenyl 2,3-dioxygenase (BPDO), an ARHD essential for the degradation of PCBs, in the metabolism of SPMs in the soil bacterium Pseudomonas alcaliphila JAB1, a versatile degrader of PCBs. We demonstrated the ability of the strain JAB1 to transform a variety of SPMs, namely the flavonoids apigenin, flavone, flavanone, naringenin, fisetin, quercetin, morin, and catechin, caffeic acid, trans-cinnamic acid, and the monoterpenes (S)-limonene and (R)-carvone. Of those, the transformation of flavone, flavanone, and (S)-limonene was conditioned by the activity of JAB1-borne BPDO and thus was researched in more detail, and we found evidence for the limonene monooxygenase activity of the BPDO. Furthermore, the bphA gene in the strain JAB1 was demonstrated to be induced by a wide range of SPMs, with monoterpenes being the strongest inducers of the SPMs tested. Thus, our findings contribute to the growing body of evidence that ARHDs not only play a role in the catabolism of aromatic pollutants, but also of natural plant-derived aromatics, and this study supports the hypothesis that ARHDs participate in ecological processes mediated by SPMs.

3.
Int J Syst Evol Microbiol ; 69(8): 2401-2407, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31166163

ABSTRACT

The creamy white to beige, aerobic, non-motile, ovoid to rod-shaped, Gram-stain-negative strain, Cd-10T, was isolated from heavy-metal-contaminated sludge from a decantation basin of a heavy metal processing factory based on its ability to tolerate CdCl2 in the cultivation medium. In the reconstruction of its phylogeny based on 16S rRNA gene sequences, strain Cd-10T clustered with species of the genera Gemmobacter, Xinfangfangia, Tabrizicola and Rhodobacter within the family Rhodobacteraceae. Its 16S rRNA gene sequence exhibited 96.32 % pairwise similarity to the type strain of Xinfangfangia soli, 95.3 % to that of Gemmobacter intermedius, followed by Tabrizicola fusiformis (95.10 %), Rhodobacter sediminis (94.88 %), Gemmobacter nectariphilus and Rhodobacter capsulatus (both 94.81 %). The major respiratory quinone was Q-10 accompanied by Q-9, the fatty acid profile consisted predominantly of C18 : 1ω7c, C18 : 0, C16 : 0 and C16 : 1ω7c, the major polar lipids were phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine and diphosphatidylglycerol. An analysis of the percentage of conserved proteins deduced from draft or complete genomic sequences of strain Cd-10T and representatives of its closest relatives suggested that strain Cd-10T is a member of a novel genus within the Rhodobacteraceae family for which we propose the name Pseudogemmobacter. Strain Cd-10T (=DSM 103618T=NCCB 100645T) is the type strain of Pseudogemmobacter bohemicus gen. nov., sp. nov., the type species of the genus Pseudogemmobacter gen. nov.


Subject(s)
Metals, Heavy , Phylogeny , Rhodobacteraceae/classification , Sewage/microbiology , Bacterial Typing Techniques , Base Composition , Czech Republic , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
4.
Stand Genomic Sci ; 13: 3, 2018.
Article in English | MEDLINE | ID: mdl-29435100

ABSTRACT

In this study, following its isolation from contaminated soil, the genomic sequence of Pseudomonas alcaliphila strain JAB1 (=DSM 26533), a biphenyl-degrading bacterium, is reported and analyzed in relation to its extensive degradative capabilities. The P. alcaliphila JAB1 genome (GenBank accession no. CP016162) consists of a single 5.34 Mbp-long chromosome with a GC content of 62.5%. Gene function was assigned to 3816 of the 4908 predicted genes. The genome harbors a bph gene cluster, permitting degradation of biphenyl and many congeners of polychlorinated biphenyls (PCBs), a ben gene cluster, enabling benzoate and its derivatives to be degraded, and phe gene cluster, which permits phenol degradation. In addition, P. alcaliphila JAB1 is capable of cometabolically degrading cis-1,2-dichloroethylene (cDCE) when grown on phenol. The strain carries both catechol and protocatechuate branches of the ß-ketoadipate pathway, which is used to funnel the pollutants to the central metabolism. Furthermore, we propose that clustering of MALDI-TOF MS spectra with closest phylogenetic relatives should be used when taxonomically classifying the isolated bacterium; this, together with 16S rRNA gene sequence and chemotaxonomic data analyses, enables more precise identification of the culture at the species level.

SELECTION OF CITATIONS
SEARCH DETAIL
...